Science

Atomic TV Broadcasts Live Video Using Lasers and Cloud Of Large-Sized Atoms

Demonstrating that a cloud of atoms can be used as a receiver to pick up video transmission, researchers have developed an atomic television. The television uses atom clouds and lasers to carry video signal that meets the traditional resolution standard. Atom-based communication systems are believed to be smaller and can tolerate more noise than conventional electronics. The atoms, used in the device, are prepared in high-energy Rydberg states, which are unusually sensitive to electromagnetic fields including radio signals.

The team from the National Institute of Standards and Technology (NIST), US, prepared gaseous rubidium atoms in Rydberg states in a glass container using two different colour lasers. In order to receive signals, a stable radio signal is applied to the atoms-filled glass container. Here, the energy shifts in the Rydberg atoms that modulate the carrier signal can be detected by the team.

Following this, the modulated output is fed to television after which an analogue-to-digital converter changes the signals into a video graphics array format for display. When a live video signal or game is to be displayed, the input is sent from a video camera to modulate the original carrier signal. This signal is then fed to a horn antenna which directs the transmission to the atoms.

The original signal carrier is used as a reference and the final video output, detected through the atoms, is compared with it to evaluate the system.“We figured out how to stream and receive videos through the Rydberg atom sensors. Now we are doing video streaming and quantum gaming, streaming video games through the atoms. We basically encoded the video game onto a signal and detected it with the atoms. The output is fed directly into the TV,” said Chris Holloway, project leader and author of the study.

In the study, published in AVS Quantum Science, the team studied the laser beam powers, sizes, and detection methods so that video can be received in standard definition format by the atoms. The size of the laser beam affects the average time the atoms remain in the interaction zone of the laser. The time here is inversely related to the receiver’s bandwidth which means that more data is produced using a smaller beam and shorter time.

For the latest tech news and reviews, follow Gadgets 360 on Twitter, Facebook, and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel.

NASA Artemis I SLS-Orion Spacecraft Launch Halted Due to Engine Bleed Issue: All Details

Samsung Galaxy S22 Series Getting August Camera Update With Improvements: All Details

Articles You May Like

Amit Yoran, chair and CEO of cybersecurity firm Tenable, dies unexpectedly after cancer battle
New DOE report finds 90% of wind turbine materials are recyclable
Failure to report child sex abuse to become a criminal offence
Can Penn State coach James Franklin win the big one?
New Orleans attacker used Meta glasses to record video of city weeks before truck atrocity